Mononuclear Nickel(III) Complexes [Ni^{III}(OR)(P(C₆H₃-3-SiMe₃-2-S)₃)]⁻ (R = Me, Ph) Containing the Terminal Alkoxide Ligand: Relevance to the Nickel Site of Oxidized-Form [NiFe] Hydrogenases

Tzung-Wen Chiou and Wen-Feng Liaw*

Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan

Received March 31, 2008

The unprecedented nickel(III) thiolate $[NI^{III}(OR)(P(C_6H_3-3-SIMe_3-2-S)_3)] - [R = Ph (1), Me (3)]$ containing the terminal Ni^{III}-OR bond, characterized by UV-vis, electron paramagnetic resonance, cyclic voltammetry, and single-crystal X-ray diffraction, were isolated from the reaction of $[Ni^{III}(Cl)(P(C_6H_3-3-SiMe_3-2-S)_3)]^-$ with 3 equiv of $[Na][OPh]$ in tetrahydrofuran (THF)-CH₃CN and the reaction of complex 1 with 1 equiv of [Bu₄N][OMe] in THF-CH₃OH, respectively. Interestingly, the addition of complex **¹** into the THF-CH3OH solution of [Me4N][OH] also yielded complex **3**. In contrast to the inertness of complex $[Ni^{III}(Cl)(P(C₆H₃-3-SiMe₃-2-S)₃)]$ ⁻ toward 1 equiv of [Na][OPh], the addition of 1 equiv of [Na][OMe] into a THF-CH₃CN solution of [Ni^{III}(CI)(P(C₆H₃-3-SiMe₃-2-S)₃)]⁻ yielded the known $[N^{ill}(CH₂CN)(P(C₆H₃-3-SiMe₃-2-S)₃)] - (4)$. At 77 K, complexes 1 and 3 exhibit a rhombic signal with *q* values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic *g* values of the known trigonal-bipyramidal Ni^{III} [Ni^{III}(L)(P(C₆H₃-3-SiMe₃-2-S)₃)]⁻ (L = SePh, SEt, Cl) complexes. Compared to complexes $[Ni^{III}(EPh)(P(C₆H₃-3-SiMe₃-2-S)₃)]$ ⁻ [E = S (2), Se] dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex **1** coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm. In a comparison of the Ni^{III}-OMe bond length of 1.885(2) Å found in complex 3, the longer Ni^{III}-OPh bond distance of 1.910(3) Å found in complex 1 may be attributed to the absence of *σ* and *π* donation from the [OPh]-coordinated ligand to the Ni^{III} center.

Introduction

Hydrogenase, a metalloenzyme, catalyzes a reversible twoelectron oxidation of H_2 in aerobic and anaerobic microorganisms. $1-3$ Two classes of hydrogenases, [Fe]-only hydrogenases ([Fe]-only H2ases) and [NiFe] hydrogenases ([NiFe] H2ases), have been studied widely. The X-ray crystallographic studies of the active-site structure of [NiFe] $H₂$ ases isolated from *Desulfo*V*ibrio gigas*, *Desulfo*V*ibrio* V*ulgaris*, *Desulfo*V*ibrio fructoso*V*orans*, and *Desulfo*V*ibrio desulfuricans* ATCC27774 in combination with infrared spectroscopy have revealed an active site comprised of a heterobimetallic $(S_{\text{cys}})_2$ Ni(μ -S_{cys})₂(μ -X)Fe(CO)(CN)₂ (X = O²⁻, HO₂⁻, OH⁻)
cluster ^{2,3} The bridging ligand X was proposed to be an cluster.^{2,3} The bridging ligand X was proposed to be an oxide, hydroxide, or hydroperoxide in the oxidized state and was found to be absent in the reduced state. Extended X-ray absorption fine structure (EXAFS) studies of *Chromatium*

Inorg. Chem. **²⁰⁰⁸**, *⁴⁷*, 7908-⁷⁹¹³

Inorganic Chemistr

^{*} To whom correspondence should be addressed. E-mail: wfliaw@ mx.nthu.edu.tw.

^{(1) (}a) Carepo, M.; Tierney, D. L.; Brondino, C. D.; Yang, T. C.; Pamplona, A.; Telser, J.; Moura, I.; Moura, J. J. G.; Hoffman, B. M. *J. Am. Chem. Soc.* **2002**, *124*, 281–286. (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.; Hoffman, B. M.; Maroney, M. J. *J. Am. Chem. Soc.* **1993**, *115*, 5629–5635. (c) Adams, M. W. W.; Stiefel, E. I. *Curr. Opin. Chem. Biol.* **2000**, *4*, 214–220.

^{(2) (}a) Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. *Nature* **1995**, *373*, 580–587. (b) Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J.-C. *Structure* **1999**, *7*, 557–566. (c) Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. *J. Am. Chem. Soc.* **2002**, *124*, 11628–11635. (d) Foerster, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W,. *J. Am. Chem. Soc.* **2003**, *125*, 83–93. (e) Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Roseboom, W.; Albracht, S. P. J.; Maroney, M. J. *Biochemistry* **2000**, *39*, 7468–7479. (f) Gu, Z.; Dong, J.; Allan, C. B.; Choudhury, S. B.; Franco, R.; Moura, J. J. G.; Moura, I.; LeGall, J.; Przybyla, A. E.; Roseboom, W.; Albracht, S. P. J.; Axley, M. J.; Scott, R. A.; Maroney, M. J. *J. Am. Chem. Soc.* **1996**, *118*, 11155–11165. (g) Carepo, M.; Tierney, D. L.; Brondino, C. D.; Yang, T. C.; Pamplona, A.; Telser, J.; Moura, I.; Moura, J. J. G.; Hoffman, B. M. *J. Am. Chem. Soc.* **2002**, *124*, 281– 286.

^{(3) (}a) Rousset, M.; Montet, Y.; Guigliarelli, B.; Forget, A.; Asso, M.; Bertrand, P.; Fontecilla-Camps, J. C.; Hatchikian, E. C. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 11625–11630. (b) Matias, P. M.; Soares, C. M.; Saraiva, L. M.; Coelho, R.; Morais, J.; Le Gall, J.; Carrondo, M. A. *J. Biol. Inorg. Chem* **2001**, *6*, 63–81.

Complexes $[Ni^{III}(OR)(P(C_6H_3 - 3-SiMe_3 - 2-S)_3)]$ $(R = Me, Ph)$

vinosum showed that the Ni-O distance of 1.91 \AA is consistent with a hydroxy bridge $(Ni-A \text{ state})^2$. coordination environment about Ni in the [NiFe] $H₂$ ases is pseudo square pyramidal in the oxidized state. The Ni site has been proposed to be redox-active and changes between Ni^{III} and Ni^{II} , while the Fe site remains as Fe^{II} in all spectrally defined redox states of the enzyme. $2-5$ The EXAFS/electron paramagnetic resonance (EPR) studies indicate that the formal oxidation state of the Ni center is paramagnetic Ni^{III} in Ni-A, Ni-B, and Ni-C states. $2-5$ Also, the ENDOR experiments showed that the Ni-A form exhibits an ^{17}O signal from a solvent-derived $(H_2¹⁷O)$ species, and the signal disappears upon redox cycling to the Ni-C state.^{2g} In particular, recent X-ray absorption spectroscopy shows that the Ni site of the regulatory hydrogenase (RH) in the presence of hydrogen (RH^{+H_2}) , proposed as the Ni-C state, isolated from *Ralstonia eutropha* is a six-coordinate $[Ni^{III}S_2(O/N)_3(H)]$.⁴

Despite a number of well-characterized high-valent dinuclear bis(μ -oxo)nickel(III) complexes,⁵ no mononuclear nickel(III) thiolate complexes containing the terminal alkoxide ligand were reported.⁶ Recently, we reported the isolation and characterization of the mononuclear $[Ni^{III}(L)(P(C₆H₃–$ $3-SiMe₃-2-S₃$]⁻ (L = 2-S-C₄H₃S, SePh, SEt, Cl).⁷ The increased electron density of the Ni center of complexes $[Ni^{III}(L)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ modulated by the monodentate ligand L and the substituted groups of the phenylthiolate rings promotes the stability of the nickel(III) thiolate complexes. The similarity of the synthesized $[Ni^{III}(SR)(P(C₆H₃–$ $3-SiMe₃-2-S₃$]⁻ complexes to the nickel active-site structure of [NiFe] H2ases has inspired the preparation of derivatives to mimic the features of the Ni-A and Ni-B states of the catalytic cycle of [NiFe] H₂ase. Herein, we report the synthesis of $[Ni^{III}(OR)(P(C_6H_3-3-SiMe_3-2-S)_3)]^{\text{T}}$ $[R = Ph (1),$ Me (3)] containing the terminal Ni^{III} -OPh and Ni^{III} -OMe bonds, respectively.

Results and Discussion

In contrast to the inertness of $[Ni^{III}(Cl)(P(C_6H_3 - 3-SiMe_3 [2-S]_3$]⁻ toward 1 equiv of [Na][OPh] in tetrahydrofuran **Scheme 1**

 (THF) -CH₃CN (3:1 volume ratio) at room temperature, $[Ni^{III}(Cl)(P(C_6H_3-3-SiMe_3-2-S_3)]$ and 3 equiv of [Na][OPh] dissolved in THF-CH₃CN (3:1 volume ratio) were stirred at ambient temperature for 12 h to yield the mononuclear $[Ni^{III}(OPh)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ (1; yield 73%) after separation of the insoluble NaCl and the excess [Na][OPh] by filtration (Scheme 1a).7 Complex **1** is air-stable in the solid state and exhibits a diagnostic ¹H NMR spectrum with phenyl proton resonances well removed from the diamagnetic region. The proton resonances [*δ* 15.8 (br), 10.4 (br), 9.4 (br), -5.3 (br) ppm] were assigned to [OPh]⁻ and [P(C_6H_3 - $3-SiMe₃-2-S₃$ ³⁻ ligands. Compared to the rhombic signal with *g* values of 2.31, 2.09, and 2.00 (4.2 K) observed in $[Ni^{III}(SePh)(P(o-C_6H_3-2-S)_3)]^{-,7a}$ complex 1 displays a rhombic signal with *g* values of 2.31, 2.04, and 1.99 [THF-CH3CN (3:1 volume ratio)] at 77 K and *^g* values of 2.28, 2.09, and 2.02 in a powdered sample EPR spectrum (Figure 1). The effective magnetic moment was $1.73 \mu_B$ for complex 1. These results are consistent with the central Ni^{III} possessing a d7 electronic configuration in a trigonalbipyramidal ligand field.⁷

In contrast, upon the addition of 1 equiv of a [Na][SPh] to the THF-CH₃CN (3:1 volume ratio) solution of [Ni^{III}(Cl)- $(P(C_6H_3-3-SiMe_3-2-S_3)]$, a pronounced color change from dark green to blue green occurs at ambient temperature. The $UV - vis$, EPR, and single-crystal X-ray diffraction studies confirmed the formation of $[Ni^{III}(SPh)(P(C_6H_3-3-SiMe_3-2-))]$ S)₃)]⁻ (2; Figure 2). Presumably, the stronger σ - and π -electron-donating nature of phenylthiolate [SPh]⁻, compared to phenoxide [OPh]⁻, rendering the Ni^{III} center of the $[Ni^{III}(P(C_6H_3-3-SiMe_3-2-S_3)]$ motif in the more electronrich functionality to promote the stability of complex **2** is responsible for the facile formation of complex **2** when $[Ni^{III}(Cl)(P(C_6H_3-3-SiMe_3-2-S_3)]$ was reacted with 1 equiv of [Na][SPh] in THF-CH₃CN. In comparison with complex

^{(4) (}a) Haumann, M.; Porthum, A.; Buhrke, T.; Liebisch, P.; Meyer-Klaucke, W.; Friedrich, B.; Dau, H. *Biochemistry* **2003**, *42*, 11004– 11015. (b) Brecht, M.; Gastel, M. V.; Buhrke, T.; Friedrich, B.; Lubitz, W. *J. Am. Chem. Soc.* **2003**, *125*, 13075–13083.

^{(5) (}a) Hikichi, S.; Yoshizawa, M.; Sasakura, Y.; Akita, M.; Moro-oka, Y. *J. Am. Chem. Soc.* **1998**, *120*, 10567–10568. (b) Shiren, K.; Ogo, S.; Fujinami, S.; Hayashi, H.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Moro-oka, Y. *J. Am. Chem. Soc.* **2000**, *122*, 254–262. (c) Mandimutsira, B. S.; Yamarik, J. L.; Brunold, T. C.; Gu, W.; Cramer, S. P.; Riordan, C. G. *J. Am. Chem. Soc.* **2001**, *123*, 9194–9195.

^{(6) (}a) Li, Z.; Ohki, Y.; Tatsumi, K. *J. Am. Chem. Soc.* **2005**, *127*, 8950– 8951. (b) Zhu, W.; Marr, A. C.; Wang, Q.; Neese, F.; Spencer, D. J. E.; Blake, A. J.; Cooke, P. A.; Wilson, C.; Schröder, M. Proc. Natl. Acad. *Sci. U.S.A.* **2005**, *102*, 18280–18285. (c) Ogo, S.; Kabe, R.; Uehara, K.; Kure, B.; Nishimura, T.; Menon, S. C.; Harada, R.; Fukuzumi, S.; Higuchi, Y.; Ohhara, T.; Tamada, T.; Kuroki, R. *Science* **2007**, *316*, 585–587.

^{(7) (}a) Lee, C.-M.; Chen, C.-H.; Ke, S.-C.; Lee, G.-H.; Liaw, W.-F. *J. Am. Chem. Soc.* **2004**, *126*, 8406–8412. (b) Chen, C.-H.; Lee, G.-H.; Liaw, W.-F. *Inorg. Chem.* **2006**, *45*, 2307–2316. (c) Lee, C.-M.; Chuang, Y.-L.; Chiang, C.-Y.; Lee, G.-H.; Liaw, W.-F. *Inorg. Chem.* **2006**, *45*, 10895–10904. (d) Lee, C.-M.; Chiou, T.-W.; Chen, H.-H.; Chiang, C.-Y.; Kuo, T.-S.; Liaw, W.-F. *Inorg. Chem.* **2007**, *46*, 8913–8923.

Figure 1. (a) X-band frozen-solution [THF-CH₃CN (3:1 volume ratio)] EPR spectrum of complex **1** with *g* values of 2.31, 2.04, and 1.99 recorded at 77 K and (b) X-band powdered sample EPR spectrum of complex **1** with *g* values of 2.28, 2.09, and 2.02.

Figure 2. ORTEP drawing and labeling scheme of complex **2** with thermal ellipsoids drawn at the 50% probability level. Selected bond distances (Å) and angles (deg): Ni(1)-S(4) 2.2459(9), Ni(1)-S(1) 2.2986(8), Ni(1)-S(2) 2.2698(9), Ni(1)-S(3) 2.2133(8), Ni(1)-P(1) 2.1375(8); S(4)-Ni(1)-P(1) 176.82(3),S(4)-Ni(1)-S(1)93.16(3),S(4)-Ni(1)-S(2)90.38(4),S(4)-Ni(1)-S(3) 96.11(3),S(1)-Ni(1)-S(2)1.6.92(3),S(2)-Ni(1)-S(3)123.94(4),S(1)-Ni(1)-S(3) 128.06(4).

2 and $[Ni^{III}(SePh)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex **1** coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm (Figure 3).

To further examine the effect of electronic modulations of the monodentate ligand [OR]- on the stability and

Figure 3. UV-vis spectrum (in THF) of complex **¹**.

reactivity of $[Ni^{III}(OR)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ complexes, complex $[Ni^{III}(OMe)(P(C_6H_3-3-SiMe_3-2-S)_3)]$ ⁻ (3) containing the terminal methoxide ligand was synthesized by adopting complex **1** serving as a precursor. In contrast to the reaction of $[Ni^{III}(Cl)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ and $[Na][OPh]$ yielding complex **1** as shown in Scheme 1a, the addition of 1 equiv of [Na][OMe] into a THF-CH₃CN solution of [Ni^{III}(Cl)(P(C₆H₃- $3-SiMe₃-2-S₃$]⁻ produced the known Ni^{III} complex [Ni^{III}(CH₂- $CN(P(C_6H_3-3-SiMe_3-2-S_3))$ ⁻ (4) characterized by the UV-vis spectrum [characteristic absorptions (543 and 648 nm) for $(CH₃CN)$; Scheme 1b]. These results implicate the electrondeficient $[NiPS_3]$ core induced by the elimination of a NaCl salt from the reaction of $[Ni^{III}(Cl)(P(C_6H_3-3-SiMe_3-2-S)_3)]$ and $[Na][OMe]$ may promote coordination of $CH₃CN$ to the [NiPS₃] core to yield the proposed $[Ni^{III}(NCCH_3)(P(C_6H_3-))]$ $3-SiMe₃-2-S₃$] intermediate. The stronger base [OMe]⁻, compared to [OPh]-, may then trigger deprotonation of the coordinated CH₃CN of the proposed [Ni^{III}(NCCH₃)(P(C₆H₃- $3-SiMe₃-2-S₃$)] intermediate, and the subsequent coordination of the $[CH_2CN]$ ⁻ carbanion to Ni^{III} yields the thermally stable complex **4**. 7

Upon slow injection of 1 equiv of [*n*-Bu4N][OMe] in MeOH into the THF-MeOH solution of complex **¹** and after stirring overnight at room temperature, the anionic **3** was isolated as a dark green solid and characterized by singlecrystal X-ray diffraction (Scheme 1c). The conversion of complex 1 to complex 3 was monitored by UV-vis spectrometry; the intense absorption bands at 603 and 743 nm disappeared, accompanied by the formation of absorption bands at 599 and 749 nm. The frozen-solution EPR spectrum of complex 3 in THF-CH₃OH (3:1 volume ratio) at 77 K, essentially indistinguishable from those of the 77 K EPR spectra of complexes 1 and 2 ($g = 2.31, 2.04,$ and 1.99 in THF-CH₃CN (3:1 volume ratio) at 77 K), exhibits high rhombicities with three principal *g* values of 2.28, 2.04, and 2.00 (Figure 4). Compared to complex 2 ($E_{1/2} = -1.09 \text{ V}$) and $[Ni^{III}(ER)(P(C_6H_3-3-SiMe_3-2-S)_3)]$ ⁻ $(E_{1/2} = -1.32$ V for $ER = SEt$ and $E_{1/2} = -1.26$ V for $ER = SePh$), complexes **1** and **3** with the coordinated [OPh]- and [OMe]- ligands reveal one reversible Ni^{III/II} redox process at -1.08 V $[E_{1/2}]$ (CH₃CN)] and -0.96 V [$E_{1/2}$ (MeOH)] (vs C_{p2}Fe/C_{p₂Fe⁺),} respectively (Figure 5). The more anodic redox potential of complexes **1** and **3**, compared to those of complexes **2** and $[Ni^{III}(SEt)(P(C_6H_3-3-SiMe_3-2-S_3)]^-$, is ascribed to the weaker electron-donating ability of the coordinated $[OR]$ ⁻ (R = Ph,

Complexes $[Ni^{III}(OR)(P(C_6H_3 - 3-SiMe_3 - 2-S)_3)]$ $(R = Me, Ph)$

Figure 4. X-band frozen-solution [THF-MeOH (3:1 volume ratio)] EPR spectrum of complex **3** with *g* values of 2.28, 2.04, and 2.00 recorded at 77 K.

Figure 5. Cyclic voltammograms of (a) a 2.0 mM CH₃CN solution of complex **2**, (b) a 2.0 mM CH3CN solution of complex **1**, and (c) a 2.0 mM MeOH solution of complex 3 in 0.1 M [*n*-Bu₄N][PF₆] with a glassy carbon working electrode. [Potentials were measured at 298 K vs a Ag/AgCl reference electrode by using a glassy carbon working electrode. Under the conditions employed, the potential (V) of the ferrocinium/ferrocene couple was 0.39 (CH₂Cl₂)].

Me) ligand compared to [SEt]⁻ and implies the existence of the metastable $[Ni^{II}(OR)(P(C_6H_3-3-SiMe_3-2-S_3))]^{2-}$. Reduction of complex 1 by 1 equiv of $[PPN][BH_4]$ in THF- $CH₃CN$ under $N₂$ at ambient temperature yielded the proposed $[Ni^{II}(OPh)(P(C_6H_3 - 3-SiMe_3 - 2-S_3)]^{2}$ $[UV - vis:$ 447 and 792 nm (Figure 6)], the analogue of the known $[Ni^{II}(PPh_3)(P(C_6H_4-2-S)_3)]^{-1}$,^{7b} and then the thermally unstable $[Ni^{II}(OPh)(P(C_6H_3-3-SiMe_3-2-S_3)]^{2-}$ converted into the known $[Ni^H2(P(C₆H₃-3-SiMe₃-2-S)₃)₂]²⁻ characterized by$ UV-vis and single-crystal X-ray diffraction.7d

It has been known that the reactivity of $[Ni^{III}(L)(P(C_6H_3-))]$ 3-SiMe₃-2-S₎₃)]⁻ may be tailored by ligand L^7 . To further explore the nickel(III) thiolate complexes containing the terminal Ni^{III} -OH bond, we repeated the reaction of complex 1 and $[Me₄N][OH]$ in THF-CH₃OH. On the basis of the UV-vis spectrum and single-crystal X-ray diffraction, complex **3** was isolated after the reaction solution of complex **1** and 1 equiv of [Me4N][OH] was stirred for 3 h and the insoluble solid was removed.

Figure 6. UV-vis spectrum (in THF-CH₃CN) of the proposed [Ni^{II}(OPh)(P(C₆H₃- $3-SiMe₃-2-S₃$)₃)]^{2-7b}

Figure 7. ORTEP drawing and labeling scheme of complex **1** with thermal ellipsoids drawn at the 50% probability level. Selected bond distances (Å) and angles (deg): $Ni(1)-O(1)$ 1.910(3), $Ni(1)-S(1)$ 2.2603(11), $Ni(1)-S(2)$ 2.3191(11), Ni(1)-S(3) 2.2254(11), Ni(1)-P(1) 2.1313(11); O(1)-Ni(1)-P(1)
177.25(10), O(1)-Ni(1)-S(1) 90.39(9), O(1)-Ni(1)-S(2) 97.20(9), $177.25(10)$, $O(1) - Ni(1) - S(1)$ $90.39(9)$, $O(1) - Ni(1) - S(2)$ $97.20(9)$,
 $O(1) - Ni(1) - S(3)$ $94.35(8)$ $S(1) - Ni(1) - S(2)$ $106.04(4)$ $S(2) - Ni(1) - S(3)$ $O(1) - Ni(1) - S(3)$ 94.35(8), $S(1) - Ni(1) - S(2)$ 106.04(4), $S(2) - Ni(1) - S(3)$
122.29(4), $S(1) - Ni(1) - S(3)$ 130.25(5) $122.29(4)$, $S(1) - Ni(1) - S(3)$ 130.25(5).

Compared to the reported dinuclear bis(*µ*-oxo)nickel(III) complexes $[(PhTt^tBu)Ni]_2(\mu-O)_2$, $[Tp^{Me3}Ni(\mu-O)NiTp^{Me3}]$, and $[Ni_2(\mu\text{-}O)(Me_3\text{-}tpa)_2]^{2+}$,⁵ complexes **1** and **3** are the first examples of mononuclear nickel(III) thiolate complexes containing a terminal phenoxide/alkoxide ligand, characterized by single-crystal X-ray diffraction. Single-crystal X-ray structures of complexes **1** and **3** are shown in Figures 7 and 8, respectively, and selected bond lengths and bond angles are collected in the figure captions. The geometry of the Ni center in complex **3** is a distorted trigonal bipyramid, with $O(1)$ and $P(1)$ occupying the axial positions. The Ni- $O(R)$ distances of 1.910(3) and 1.885(2) Å in complexes **1** and **3**, respectively, are comparable to the $Ni-O(H)$ bond distance (1.91 Å) observed in the active-site structure of the oxidized form [NiFe] H_2 ase,^{2e–g} and similar to the corresponding metrics for dinuclear bis(μ -oxo)nickel(III) complexes established by single-crystal X-ray analysis. 5 The shortening of the Ni-OMe bond distance $[1.885(2)$ Å in complex 3, compared to the Ni-OPh bond length of $1.910(3)$ Å in complex **1**, is presumably caused by the stronger electrondonating methoxide ligand coordinating to the electrondeficient Ni^{III} core to stabilize complex 3. Of importance, in contrast to the Ni-OPh and Ni-OMe bond distances of 1.910(3) and 1.885(2) Å found in **1** and **3**, respectively, the shorter Ni-SPh distance of 2.246(1) Å observed in complex

Figure 8. ORTEP drawing and labeling scheme of complex **3** with thermal ellipsoids drawn at the 50% probability level. Selected bond distances (Å) and angles (deg): Ni(1)-O(1) 1.885(2), Ni(1)-S(1) 2.2591(10), Ni(1)-S(2) 2.2988(10), Ni(1)-S(3) 2.2794(10), Ni(1)-P(1) 2.1162(10); O(1)-Ni(1)-P(1) 176.65(8), O(1)-Ni(1)-S(1) 91.35(8), O(1)-Ni(1)-S(2) 100.97(9), O(1)-Ni(1)-S(3) 96.18(9), S(1)-Ni(1)-S(2) 136.15(4), S(2)-Ni(1)-S(3) 105.84(4), S(1)-Ni(1)-S(3) 114.51(4).

Table 1. Selected Bond Length (Å) and Angle (deg) for Complexes **1-3**, $[Ni^{III}(SePh)(P(C_6H_3-3-SiMe_3-2-S_3)]^-$, and $[Ni^{III}(SEt)(P(C_6H_3-3-SiMe_3-2-S_3)]$

	$Ni-ER(E)$		
	O. S. Se: R		
compound	$=$ Ph, Et)	$Ni-Save$	$Ni-P$
	1.910(3)	2.268(1)	2.131(1)
3	1.885(2)	2.279(1)	2.116(1)
$\mathbf{2}$	2.246(1)	2.261(1)	2.138(1)
$[Ni^{III}(SEt)(P(C_6H_3-3-SiMe_3-2-S_3)]^-$	2.273(1)	2.253(1)	2.135(1)
$[Ni^{III}(SePh)(P(C_6H_3-3-SiMe_3-2-S_3)]^-$	2.347(1)	2.263(1)	2.132(1)

², compared to the Ni-SEt distance of 2.273(1) Å observed in $[Ni^{III}(SEt)(P(C_6H_3-3-SiMe_3-2-S_3)]^{-7}$ may implicate the significant σ and π donation from [SPh] to Ni^{III} (Table 1).⁸ Presumably, the tunable electron-donating functionalities of the tetradentate ligand $[P(C_6H_3-3-SiMe_3-2-S)_3]^{3-}$ of $[Ni^{III}(L)$ - $(P(C_6H_3 - 3-SiMe_3 - 2-S_3)]$ ⁻ modulated by the monodentate ligand L may reimburse the electronic deficiency of the Ni center induced by the less electron-donating ability of the $[OR]$ ⁻ ligand to stabilize the $[Ni^{III}-OR]$ motif.

Conclusion and Comments

Mononuclear **1** containing a terminal [OPh]-coordinated ligand, characterized by UV-vis, EPR, CV, and singlecrystal X-ray diffraction, was synthesized from the reaction of $[Ni^{III}(Cl)(P(C_6H_3 - 3-SiMe_3 - 2-S_3)]$ with 3 equiv of [Na][OPh] in THF-CH₃CN (3:1 volume ratio) at room temperature. In the synthesis of mononuclear $[Ni^{III}(OMe)$ - $(P(C_6H_3 - 3-SiMe_3 - 2-S_3)]$ containing a terminal $[OMe]$ ligand, methoxide [*n*-Bu4N][OMe] triggers ligand substitution of complex **1** to yield complex **3**, in contrast to the addition of $[Ni^{III}(Cl)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ into [Na][OMe] producing the known 4 in THF-CH₃CN. These results show that the reaction pathways [ligand-displacement reaction yielding complex **1** (Scheme 1a) vs deprotonation reaction yielding complex **4** (Scheme 1b)] upon the reaction of $[Ni^{III}(Cl)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ and nucleophiles ([Na][OR], $R = Ph$, Me) in THF-CH₃CN may be regulated by nucleophiles.

At 77 K, complexes **1** and **3** exhibit a rhombic signal with *g* values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic *g* values of the trigonalbipyramidal low-spin d⁷ Ni^{III} complexes $[Ni^{III}(L)(P(C_6H_3 3\text{-}SiMe₃ - 2\text{-}S₃$]⁻ (L = SEt, SePh, Cl, CH₂CN).⁷ In contrast to the $Ni^{III}-SPh$ and $Ni^{III}-SEt$ bond distances of 2.246(1) and 2.273(1) Å found in $[Ni^{III}(SR)(P(C_6H_3-3-SiMe_3-2-S_3)]^{-1}$ $(R = Ph, Et)$, respectively, the longer terminal Ni^{III}-OPh bond distance of 1.910(3) Å observed in complex **1**, compared to the Ni^{III}-OMe bond length of 1.885(2) \AA found in complex **3**, may implicate the absence of the significant σ and π donation from [OPh] to Ni^{III}.⁸ Presumably, the electron-rich functionalities of the Ni^{III} center derived from $[P(C_6H_3-3-SiMe_3-2-S)_3]$ ³⁻ acting as a strong σ - and π -donating group in complexes **1** and **3** are responsible for the stabilization of the Ni^{III} state to prevent the reduction of Ni^{III} by the monodentate $[OR]^-$ ($R = Ph$, Me) ligand. This study unambiguously illustrates the aspect of how the coordinated ligands ($[OR]^-$ and $[PC_6H_3-3-SiMe_3-2-S_3]^{3-}$) of the mononuclear $[Ni^{III}(OR)(P(C_6H_3-3-SiMe_3-2-S_3)]$ ⁻ function cooperatively to reach an optimum electronic condition to stabilize the nickel(III) thiolate alkoxide complexes.

Experimental Section

Manipulations, reactions, and transfers were conducted under $N₂$ according to Schlenk techniques or in a glovebox. Solvents were distilled under N_2 from appropriate drying agents (diethyl ether from CaH₂; acetonitrile from CaH₂-P₂O₅; methylene chloride from CaH2; hexane and THF from sodium benzophenone) and stored in dried, N₂-filled flasks over 4 Å molecular sieves. N₂ was purged through these solvents before use. Solvent was transferred to the reaction vessel via a stainless cannula under a positive pressure of N₂. The reagents [Na][OC₆H₅], [n-Bu₄N][OCH₃], bis(triphenylphosphoranylidene)ammonium chloride ([PPN][Cl]; Fluka), diphenyl disulfide, nickel(II) dichloride, [(CH3)4N][OH], and [Na][OMe] were used as received. Compound [PPN][Ni(Cl)(P(o -C₆H₃-3-SiMe₃- $(2-S)_{3}$] was synthesized by published procedures.^{7c} UV-vis spectra were recorded on a GBC Cintra 10e. 1H NMR spectra were obtained on a Varian Unity-500 spectrometer. Electrochemical measurements were performed with CHI model 421 potentionstat (CH Instrument) instrumentation. Cyclic voltammograms were obtained from 2.0 mM analyte concentration in THF using 0.1 M [n-Bu₄N][PF₆] as the supporting electrolyte. Potentials were measured at 298 K vs a Ag/AgCl reference electrode by using a glassy carbon working electrode. Under the conditions employed, the potential (V) of the ferrocinium/ferrocene couple was 0.39 (CH₂Cl₂). Analyses of C, H, and N were obtained with a CHN analyzer (Heraeus).

Preparation of [PPN][Ni(OC₆H₅)P(C₆H₃-3-SiMe₃-2-S)₃] (1). Compounds $[PPN][Ni(Cl)P(C_6H_3-3-SiMe_3-2-S)_3]$ (0.242 g, 0.2 mmol) and $[Na][OC_6H_5]$ (0.070 g, 0.6 mmol) were dissolved in 5 mL of a THF-CH3CN (volume ratio 3:1) mixture solution in a Schlenk tube under N_2 . The reaction solution was stirred for 12 h at ambient temperature, and a solution color change from yellow green to deep green was observed. The blue-shift absorptions from 430 and 620 nm ([PPN][Ni(Cl)P(C₆H₃-3-SiMe₃-2-S)₃]) to 411 and 603 nm implicated the formation of **1**. The mixture solution was

⁽⁸⁾ Ashby, M. T.; Enemark, J. H.; Lichtenberger, D. L. *Inorg. Chem.* **1988**, *27*, 191.

filtered through Celite to remove the insoluble NaCl and the excess $[Na][OC₆H₅]$. Diethyl ether (20 mL) was then added to precipitate the deep-green solid **1** (yield 0.181 g, 73%). Crystals suitable for X-ray diffraction were obtained by layering of a THF-CH₃CN solution of complex **1** and diethyl ether at ambient temperature for 6 days. ¹H NMR (C₄D₈O): δ 15.8 (br), 10.4 (br), 9.4 (br), -5.3 (br) ppm ($[OC_6H_5]^-$ and $[PC_6H_3-3-SiMe_3-2-S_3]^{3-}$). Absorption spectrum (THF) [λ_{max}, nm (ε, M⁻¹ cm⁻¹)]: 411 (6700), 603 (2900), 743 (1550), 910 (1100). Anal. Calcd for C₆₉H₇₁P₃NiOS₃Si₃: C, 65.65; H, 5.67. Found: C, 65.15; H, 5.70.

Preparation of [PPN][Ni(SC₆H₅)P(C₆H₃-3-SiMe₃-2-S)₃] (2). Compounds [PPN][Ni(Cl)P(C₆H₃-3-SiMe₃-2-S)₃] (0.242 g, 0.2 mmol) and $[Na][SC_6H_5]$ (0.027 g, 0.2 mmol) were loaded into a 20 mL Schlenk tube and dissolved in 5 mL of a THF-CH₃CN (volume ratio 4:1) mixture solution under N_2 . The reaction solution was stirred for 4 h at ambient temperature, and then the mixture solution was filtered through Celite to remove the insoluble NaCl. Diethyl ether (20 mL) was then added to precipitate the green solid **2** (yield 0.175 g, 70%). Crystals suitable for X-ray diffraction were obtained by layering of a THF-CH3CN solution of complex **²** and diethyl ether at ambient temperature for 6 days. ¹H NMR (C_3D_6O): *δ* 14.8 (br), 10.5 (br), 8.3 (br), -4.0 (br) ppm ([SC₆H₅]⁻ and $[P(C_6H_3-3-SiMe_3-2-S)_3]$ ³⁻). Absorption spectrum (MeCN) [λ_{max} , nm $(\epsilon, M^{-1} \text{ cm}^{-1})$]: 357 (7350), 592 (1650), 949 (700). Anal. Calcd for C₆₉H₇₁P₃NiS₄Si₃: C, 64.82; H, 5.60. Found: C, 64.49; H, 5.69.

Preparation of [PPN][Ni(OCH₃)P(C₆H₃-3-SiMe₃-2-S)₃] (3). Complex **1** (0.248 g, 0.2 mmol) was loaded into a 30 mL Schlenk tube, followed by the addition of 5 mL of a $THF-CH_3OH$ (volume ratio 9:1) mixture solvent by a cannula under positive N_2 pressure. A portion of $[n-Bu_4N][OCH_3]$ [0.32 mL (20% in CH₃OH solution)] was then added into the THF-CH3OH solution of complex **¹** by syringe. The mixture solution was stirred overnight at room temperature. The mixture solution was filtered through Celite to remove the insoluble $[Bu_4N][OC_6H_5]$, and diethyl ether (20 mL) was then added to precipitate the dark-green solid [PPN]- [Ni(OCH₃)P(C₆H₃-3-SiMe₃-2-S)₃] (3) (yield 0.127 g, 54%). Darkgreen crystals suitable for X-ray diffraction analysis were obtained by layering of the THF-CH3OH solution of complex **³** and diethyl ether at ambient temperature for 6 days. ¹H NMR (C₃D₆O): δ 15.4 (br), 10.4 (br), 9.3 (br), -4.9 (br) ppm ([OCH₃]⁻ and [P(C₆H₃-3-SiMe₃-2-S)₃]³⁻). Absorption spectrum (CH₃OH) [λ_{max} , nm (ϵ , M⁻¹) cm⁻¹)]: 418 (3750), 599 (1400), 749 (800). Anal. Calcd for $C_{64}H_{69}$ -P3NiOS3Si3: C, 64.80; H, 5.86. Found: C, 64.07; H, 5.76.

Reaction of [PPN][Ni(Cl)(P(C₆H₃-3-SiMe₃-2-S)₃)] and [Na]-[OCH3]. Complexes [PPN][Ni(Cl)(P(C6H3-3-SiMe3-2-S)3)] (0.242 g, 0.2 mmol) and [Na][OCH3] (0.011 g, 0.2 mmol) were dissolved in a THF-CH₃CN [5 mL (volume ratio 3:1)] mixture solution under N_2 , and the solution was stirred for 3 h at ambient temperature. The solution color changing from yellow-green to purple was observed. The reaction solution was monitored by $UV - vis$, and the electronic absorptions (543, 648, and 925 nm) implicated the formation of the known **4**. 7c The resulting purple solution was filtered through Celite to remove the insoluble NaCl. The filtrate was concentrated under vacuum, and diethyl ether was then added to precipitate the known dark-purple solid **4** (yield 0.186 g, 72%) characterized by $UV-vis.^{7c}$

Reaction of Complex 1 and [(CH3)4N][OH] in THF-**CH3OH.** The CH₃OH solution of $[(CH₃)₄N][OH]$ (0.018 g, 0.2 mmol) was added to the THF-CH₃OH solution $[5 \text{ mL}$ (volume ratio 3:1)] of complex 1 (0.248 g, 0.2 mmol) under N_2 . The mixture solution was stirred for 3 h at ambient temperature, and the solution color change from deep green to dark green was observed. The reaction solution was monitored by $UV - vis$, and the electronic absorptions (418, 599, and 749 nm) implicated the formation of the complex **3**. The resulting dark-green solution was filtered through Celite to remove the insoluble $[(CH₃)₄N][OPh]$. The filtrate was concentrated under vacuum, and diethyl ether was then added to precipitate the dark-green solid complex **3** (yield 0.186 g, 72%) characterized by UV-vis and X-ray diffraction analysis.

Crystallography. Crystallographic data of complexes **¹**-**³** are summarized in Tables S2-S4 in the Supporting Information, respectively. The crystals chosen for X-ray diffraction studies measured $0.30 \times 0.18 \times 0.07$ mm for complex 1, $0.48 \times 0.38 \times$ 0.20 mm for complex 2, and $0.42 \times 0.30 \times 0.15$ mm for complex **3**, respectively. Each crystal was mounted on a glass fiber and quickly coated in an epoxy resin. Unit-cell parameters were obtained by least-squares refinement. Diffraction measurements for complexes **¹**-**³** were carried out on a SMART CCD (Nonius Kappa CCD) diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.7107$ Å) and between 2.08 and 25.34° for complex 1, between 2.08 and 25.34° for complex **2**, and between 2.08 and 25.36° for complex **3**. Least-squares refinement of the positional and anisotropic thermal parameters of all non-H atoms and fixed H atoms were based on *F*2. A *SADABS* absorption correction was made.⁹ The *SHELXTL* structure refinement program was employed.10

EPR Measurements. EPR measurements were performed at the X band using a Bruker EMX spectrometer equipped with a Bruker TE102 cavity. The microwave frequency was measured with a Hewlett-Packard 5246 L electronic counter. X-band EPR spectra of complex 1 in THF-CH₃CN were obtained with a microwave power of 19.78 mW (20.02 mW for complex **3**), a frequency at 9.604 GHz (9.636 GHz for complex **3**), and a modulation amplitude of 0.80 G at 100 kHz.

Acknowledgment. We gratefully acknowledge financial support from the National Science Council of Taiwan. The authors thank Ting-Shen Kuo for single-crystal X-ray structural determinations.

Supporting Information Available: X-ray crystallographic file in CIF format and tables of crystallographic data for the structure determinations of $1-3$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC801069T

⁽⁹⁾ Sheldrick, G. M. *SADABS, Siemens Area Detector Absorption Correction Program*; University of Göttingen: Göttingen, Germany, 1996.

⁽¹⁰⁾ Sheldrick, G. M. *SHELXTL, Program for Crystal Structure Determination*; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.